Journal of Organometallic Chemistry, 195 (1980) 193–201 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ANALYSIS OF THE VIBRATIONAL SPECTRA OF $C_6H_6CrC_6F_6$ AND $C_6D_6CrC_6F_6$ $C_{6\nu}$ SANDWICH COMPOUNDS

JOSEPH D. LAPOSA *, NGUYEN HAO, BRIAN G. SAYER and MICHAEL J.. McGLINCHEY *

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada) (Received February 25th, 1980)

Summary

The infrared and Raman spectra of $C_6H_6CrC_6F_6$ and $C_6D_6CrC_6F_6$ are analyzed, resulting in assignments for about half of the 46 normal modes in each molecule. The assignments fit well with a model of π electron migration from the C_6H_6 ring to the C_6F_6 ring.

Introduction

The vibrational spectra of the organometallic sandwich compound dibenzenechromium, $(C_6H_6)_2Cr$, have been interpreted in terms of perturbation of the free benzene vibrational levels plus introduction of new ring—metal vibrations [1-5]. It is of interest to ascertain how the vibrational energy levels are further perturbed when one of the benzene rings is replaced by hexafluorobenzene, forming the mixed sandwich compound $C_6H_6CrC_6F_6$; this also provides the first vibrational spectroscopic analysis of a π -complexed C_6F_6 moiety. We have shown in earlier NMR spectroscopic studies on $C_6H_6CrC_6F_6$ that there is considerable π electron migration from C_6H_6 to C_6F_6 in the mixed sandwich compound [6]. To aid in the vibrational assignments, the infrared and Raman spectra of $C_6D_6CrC_6F_6$ as well as $C_6H_6CrC_6F_6$ are reported herein.

Although the crystal structure of $C_6H_6CrC_6F_6$ is not known at present, structural data on a related compound, viz., $C_6H_6CrC_6F_5P(C_6H_5)_2$ [7], indicates an eclipsed C_{6v} symmetry for $C_6H_6CrC_6F_6$. Even if the carbon atoms of the two rings were staggered rather than eclipsed, the C_{6v} symmetry would still be valid. In this point group, the 46 normal modes of $C_6H_6CrC_6F_6$ can be classified as follows: $8A_1 + 3A_2 + 8B_1 + 4B_2 + 11E_1 + 12E_2$. The A_1 and E_1 modes are infrared active, while the A_1 , E_1 and E_2 modes are Raman active. We assume that the coupling between the two rings is small. Thus, 20 of the 46 modes will be described with Wilson's notation for benzene [8] as v_{1H} , v_{2H} , ... v_{20H} , with a similar notation for hexafluorobenzene, namely v_{1F} , v_{2F} , ... v_{20F} . These 20

Description	Designation	Symmetry
Ring breathing	ν_1	A1
C—F or C—H stretch	v ₂	A_1
	νī	E_2
	v 13	<i>B</i> ₁
	ν_{20}	<i>E</i> ₁
CC stretch	νs	E_2
Ring breathing C-F or C-H stretch C-C stretch in plane C-F or C-H bend out of plane C-F or C-H bend in plane ring deformation out of plane ring deformation symmetric stretch of rings relative to metal atom antisymmetric stretch of rings relative to metal atom	v_{14}	<i>B</i> ₁
	ν_{19}	E_1
in plane C—F or C—H bend	v ₃	A 2
	v9	E_2
	v ₁₅	B ₂
	v ₁₈	<i>E</i> ₁
out of plane C—F or C—H bend	ν_5	B ₁
	ν_{10}	E_1
	ν_{11}	A_1
	V17	E2
in plane ring deformation	ν_6	E_2
	ν_{12}	<i>B</i> ₁
out of plane ring deformation	ν ₄	<i>B</i> ₁
	v16	E_2
symmetric stretch of rings relative to metal atom	^{<i>v</i>} SYM STR	<i>A</i> ₁
antisymmetric stretch of rings relative to metal atom	^{<i>v</i>} ASYM STR	A_1
symmetric tilt of rings relative to metal atom	^v SYM TILT	<i>E</i> ₁
antisymmetric tilt of rings relative to metal atom	^v asym tilt	<i>E</i> ₁
compensated in phase ring translation	VREND	E_1
torsion	^v TOR	A ₂

description, designation, and symmetry of the normal modes of $C_6H_6CrC_6F_6$

schematic vibrational modes for benzene (and for hexafluorobenzene) are shown in standard texts [9]. The remaining 6 vibrations involve the metal as well as the aromatic rings; these are depicted in Nakamoto's now classic text [10]. The descriptions of all 46 modes, along with the designations used in this paper and the symmetries, are collected in Table 1.

Our intention is not to assign all 46 fundamental modes for each of the two compounds, nor even to propose assignments for every observed band, no matter how weak. Our more modest goal is to assign all the prominent bands in the spectra and develop a picture consistent with the vibrational assignments. To our knowledge, this is the first report of vibrational assignments for molecules of C_{6v} symmetry.

Vibrational analysis

The observed infrared and Raman band positions and intensities for $C_6H_6CrC_6F_6$ and $C_6D_6CrC_6F_6$ appear in Table 2. The analysis that follows (also in Table 2) is given below first for A_1 modes, then E_1 modes, and finally for E_2 modes. A few combination bands are also assigned in Table 2, without accompanying comments.

TABLE 1

TABLE 2

FREQUENCIES (in cm⁻¹), INTENSITIES, AND ASSIGNMENTS FOR RAMAN AND INFRARED BANDS OF $C_6H_6CrC_6F_6$ AND $C_6D_6CrC_6F_6$

C ₆ H ₆ CrC ₆ F ₆		C ₆ D ₆ CrC ₆ F ₆				
Raman	IR	Assignment	Raman	IR	Assignment	
39m			59m			
49m			108m		V17F	
59m			163vs	163w	211F	
112m		P17E	228m	226w	VISE	
166vs	167w		261 vw(br)		VOF	
237m	235w		304vw		-) <u>F</u>	
27000	2001		316m	317m	RIOE	
31.0w		P9F	327 vs	32715	PIOP VONN OMD	
225m	224	71	425m	04113	² SIMSIR	
240	024VW	PIOF		460-	Por	
34075	3405	^P SYM STR		400s	PSYM TILT	
428m		^v 6F	500	4925	PASYM TILT	
	466s	^v sym tilt	529s	535s	ν_{1F}	
	497s	^{<i>v</i>} ASYM TILT	558s	561s	^{<i>v</i>} ASYM STR	
531s	535vs	v_{1F}	575w	576m	^{<i>v</i>} 16F	
573m	575m	^v 16F	589vw	584w(sh)	ν_{6D}	
585s	589s	^v ASYM STR	638vw	637m	ν_{11} D	
600m(sh)	604s(sh)	ν ₆ Η	653vw	654m	v_{10D}	
619w		011		688vw	V18F +	
					VOVM TH T	
	699w	Vier +		739w		
	0001			14011	FILE FIGE	
	774	SYM TILT	802	802m	1 1. a=	
805.07	((4w	$\nu_{1F} + \nu_{1SF}$	842m	828.m.(ch)	V18D	
009W	81 8		04911	801-m	₽9D	
	818vw	ν_{18F} +		891m	ν SYM STR \pm	
		^p ASYM STR			PASYM STR	
883vw	882m	^{<i>v</i>} 10H	922m	922vs(br)	ν_{20F}	
	893m	ν_{6F} +	928s		νıD	
		^v sym tilt				
923w	921 vs	² 20F		969m		
940w	934vs	ν SYM STR ⁺		1007w		
		VASYM STR				
972s	973m	^ν 1H		1035w	$\nu_{16F} +$	
					PSYM TILT	
	984m			1060w	ν_{16F} +	
					VASVASTIT	
1006m	1006m	V1913		1102vw	ASIMILLI	
1040w	1034vw			1116vw		
10401	100404			111011		
	1049-	PSYM TILT		1120		
	104011	PSYM TILT +		1100W		
	1079	PASYM STR		1127	•• · _ /	
	1072m	$p_{16F} +$		1137VW	$v_{16F} +$	
		^p ASYM TILT			^v asym str	
	1115w			1148w		
	1139w			1162w	$v_{16F} + v_{18F} +$	
					ν SYM TILT	
1147w	1149w	ν_{9H}	1274w	1278m	$v_{1F} + v_{11F} +$	
					ν_{16F}	
	1161w	ν_{16F} +	1283m	1287s	^ν 19D	
		PASYM STR				
	1211vw			1310w		
1284vw	1285m	ν18F +		1333w		
		"SIM TILT"				
	1204-	PASYM STR		1250		
	1304m	0	1980. (1.)	1300W		
	1318m	206F +	1320M(pl)	139778	^D 2F	
		^v SYM TILT				
	1330m					

C ₆ H ₆ CrC ₆ F ₆			C ₆ D ₆ CrC ₆ F ₆			
Raman	IR	Assignment	Raman	IR	Assignment	
1387m(br)	1395vs	^v 2F		1410vs	^v 19F	
	1406vs	V 19F		1457m(sh)	$v_{1F} + v_{20F}$	
1439m	1440m(sh)	V10H		1496vw	$\nu_{16F} + \nu_{20F}$	
1485vw(br)	1494w	$\nu_{16F} + \nu_{20F}$		1514w		
	1533w	101 201		1534w		
	1601w(br)			1545w		
	1619m	$v_{18F} + v_{20F} +$		1620m(br)	$v_{18F} + v_{20F} +$	
		VSYM TILT			VSYM TILT	
1649vw		v8F		1700w	01111111	
	1682w			1894w		
	1726vw(br)			1915w		
	1758w			1950w	V2E +	
					VASYM STR	
	1807m			1969w	ν_{19F} +	
					VASYM STR	
	1856w			2086w(br)		
	1896m			2253w	v20D	
	1919vw			2265w		
	1971m	$v_{2F} + v_{16F}$		2274w		
	2265w		2298w	2296vw		
	2460w		2314m	2316w	ν_{2D}	
	2580vw			2335w	-	
	2739vw			2458w(br)		
	2927vw	^ν 20H		2749w		
	2951vw					
3092w	3090w	ν_{2H}				

TABLE 2 (continued)

s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad

A_1 modes

 C_6F_6 ring. In the C_6F_6 ring of $C_6H_6CrC_6F_6$ and $C_6D_6CrC_6F_6$, hereafter denoted as F ring, the vibrations should not vary significantly with deuterium substitution for hydrogen. $3A_1$ Raman and infrared active bands are expected, namely v_{1F} , v_{2F} and v_{11F} . From the positions of these bands in C₆F₆ [11,12], along with their expected medium to strong intensity in the Raman, these can be unambiguously assigned. v_{1F} , the ring breathing mode, appears at 535 cm^{-1} in the IR for both isotopes and at 531/529 cm⁻¹ in the Raman. In C₆F₆ this band is found at 559 cm⁻¹. The C-F stretch ν_{2F} is assigned to 1395/1397 cm^{-1} for the isotopic pair from the very strong infrared bands. The Raman bands for the pair are of weak to medium intensity. Since there are no other medium intensity Raman bands within $\pm 400 \text{ cm}^{-1}$ of this band that are isotopically invariant, this assignment seems justified. In C_6F_6 , mode ν_2 occurs at 1490 cm⁻¹. The umbrella mode, v_{11F} is assigned to the very strong Raman bands at 166/163 cm⁻¹. The corresponding infrared intensities are weak. The next strong Raman band is about 180 cm⁻¹ distant. In C₆F₆, ν_{11} is assigned to 215 cm⁻¹. It should be noted that all these A_1 F ring fundamentals appear at a lower frequency in the sandwich compounds as compared to C_6F_6 itself.

 C_6H_6 ring. The H ring modes are expected to shift with deuteration, similar to shifts observed for the corresponding modes in the pairs C_6H_6/C_6D_6 [13]

and $(C_6H_6)_2Cr/(C_6D_6)_2Cr$ [14]. Thus, the ring breathing mode ν_{1H}/ν_{1D} is assigned to strong Raman bands at 972/928 cm⁻¹. The corresponding modes for C_6H_6/C_6D_6 are at 993/945 cm⁻¹ and for $(C_6H_6)_2Cr/(C_6D_6)_2Cr$ are 970/920 cm⁻¹. The C—H stretching mode ν_{2H} is assigned to the weak Raman band at 3092 cm⁻¹ (also at 3090 cm⁻¹as a weak IR band). Since the IR active C—H stretch ν_{20H} (E_1) and Raman active C—H stretch ν_{7H} (E_2) are also expected in the 3000 cm⁻¹ region, as well as combination bands involving C—C stretches, this assignment is only tentative. In any event, the 3092 cm⁻¹ band moves to 2314 cm⁻¹ on deuteration. In C_6H_6/C_6D_6 , ν_2 appears at 3073/2303 cm⁻¹, and in $(C_6H_6)_2Cr/(C_6D_6)_2Cr$ at 3053/2267 cm⁻¹.

The umbrella mode v_{11H} proved to be somewhat elusive. It is known that v_{11} is at 673 cm⁻¹ in C₆H₆ and moves up to 791 cm⁻¹ in (C₆H₆)₂Cr. In the $600-800 \text{ cm}^{-1}$ range for $C_6H_6CrC_6F_6$, only one band exhibited both IR and Raman activity (805 cm^{-1} in the Raman and 800 cm^{-1} in the IR), and thus could be a suitable candidate for ν_{11H} . However, in $C_6D_6CrC_6F_6$, bands at 803 cm^{-1} in both the IR and Raman are present. If the bands near 800 cm⁻¹ in both $C_6H_6CrC_6F_6$ and $C_6D_6CrC_6F_6$ have a common parentage, then a v_{11H} attribution would not be reasonable since v_{11H} is isotope sensitive. However, neither F ring fundamentals, nor fundamentals involving the complex as a whole, are expected in the 800 cm^{-1} region. The answer to this problem is supplied by a consideration of ν_{18H} , an in plane C–H bending mode. This fundamental appears at $1037/814 \text{ cm}^{-1}$ in the pair $(C_6H_6)_2Cr/(C_6D_6)_2Cr$. In $C_6H_6CrC_6F_6$ a medium intensity band is observed in the IR and Raman at 1006 cm⁻¹. This is assigned to v_{18H} , and the aforementioned 803 cm⁻¹ band as the $C_6 D_6 Cr C_6 F_6$ analogue, i.e., v_{18D} . Thus, v_{11H} is assigned to the bands at 805 cm⁻¹ in the Raman and 800 cm⁻¹ in the IR. Since ν_{11H} is expected to shift on deuteration (673/496 cm⁻¹ for C_6H_6/C_6D_6 and 791/566 cm⁻¹ for $(C_6H_6)_2Cr/$ $(C_6D_6)_2Cr)$, both 637 and 654 cm⁻¹ in the infrared and Raman spectra of $C_6 D_6 Cr C_6 F_6$ are suitable candidates. Bands of lower frequency than this are isotope invariant from partners seen in $C_6H_6CrC_6F_6$; 637 cm⁻¹ has been chosen since its intensity best matches that seen in $C_6H_6CrC_6F_6$.

In summary, compared to C_6H_6 , ν_{1H} moves down in frequency, ν_{2H} changes only slightly, and ν_{11H} moves up considerably.

Vibrations involving the chromium atom. The symmetric stretching of the two rings relative to the chromium atom, designated as $\nu_{\text{SYM STR}}$, appears at 277 cm⁻¹ in (C₆H₆)₂Cr. In C₆H₆CrC₆F₆/C₆D₆CrC₆F₆, this fundamental is assigned to the strong bands at 340/327 cm⁻¹. The antisymmetric stretching mode is found at higher frequencies in (C₆H₆)₂Cr/(C₆D₆)₂Cr, namely at 490/423 cm⁻¹. For C₆H₆CrC₆F₆/C₆D₆CrC₆F₆, $\nu_{\text{ASYM STR}}$ is attributed to the strong band at 587/560 cm⁻¹. Cyvin et al. [14] have calculated isotope shifts for all six vibrations involving the metal and the rings for (C₆H₆)₂Cr/(C₆D₆)₂Cr. Unfortunately, there are few experimental data to test their predictions. For example, $\nu_{\text{SYM STR}}$ is considered by them to be isotope invariant, but no band is known to occur at 277 cm⁻¹ in (C₆D₆)₂Cr.

We have calculated the theoretical Teller-Redlich product ratio for the $8A_1$ fundamentals. For $C_6D_6CrC_6F_6/C_6H_6CrC_6F_6$, this ratio is computed to be 0.505. Our observed values, just presented, yield a value of 0.513; the agreement is excellent.

E_1 modes

 C_6F_6 ring. E₁ modes are expected to exhibit both IR and Raman activity. The C—F stretching mode ν_{20F} is found as strong Raman and IR bands at 921/922 cm⁻¹ in $C_6H_6CrC_6F_6/C_6D_6CrC_6F_6$. For C_6F_6 , the assignment of ν_{20} is complicated by Fermi resonance; 1006 cm⁻¹ has been proposed. The C—C stretching mode ν_{19F} is assigned to the strong IR band at 1406/1410 cm⁻¹. The in plane C—F bend, ν_{18F} , and the out of plane C—F bend, ν_{10F} , should both occur at low frequency, since in C_6F_6 ν_{18} is at 315 cm⁻¹ and ν_{10} at 370 cm⁻¹. However, all the bands observed in the IR and Raman below 400 cm⁻¹ show a very slight isotope dependence for $C_6H_6CrC_6F_6/C_6D_6CrC_6F_6$, so their positions offer no help in distinguishing the F ring modes from those involving chromium and both rings. Thus, ν_{18F} has been assigned to 237/228 cm⁻¹ and ν_{10F} to 325/316 cm⁻¹ since these are the only two bands seen to be both IR and Raman active below 400 cm⁻¹ that have not yet been assigned. Both ν_{10F} and ν_{18F} are at lower frequencies than their C_6F_6 counterparts.

 C_6H_6 ring. Bands in the C—H stretching region are broad and weak; the C—H stretch ν_{20H} could possibly be 2927/2253 cm⁻¹. The C—C stretch ν_{19H} is assigned to 1439/1287 cm⁻¹ for $C_6H_6CrC_6F_6/C_6D_6CrC_6F_6$. In C_6H_6/C_6D_6 , this mode is observed at 1482/1333 cm⁻¹ and in $(C_6H_6)_2Cr/(C_6D_6)_2Cr$ at 1426/1271 cm⁻¹. The in plane C—H bend, ν_{18H} has already been mentioned above with the A_1 modes. The out of plane C—H bend ν_{10H} is attributed to medium intensity IR bands at 882/654 cm⁻¹. This compares favourably with 846/660 cm⁻¹ in C_6H_6/C_6D_6 and 860/669 cm⁻¹ in $(C_6H_6)_2Cr/(C_6D_6)_2Cr$.

Vibrations involving the chromium atom. The strong IR bands at 466/460 cm⁻¹ are assigned to $\nu_{\text{SYM TILT}}$, while the strong pair at 497/492 cm⁻¹ are attributed to $\nu_{\text{ASYM TILT}}$. In $(C_6H_6)_2$ Cr these occur at 335 and 459 cm⁻¹, respectively. The remaining mode, ν_{BEND} , otherwise referred to as a compensated in phase ligand translation, has not been assigned. In $(C_6H_6)_2$ Cr this mode is at 171 cm⁻¹. In the C_6H_6 CrC₆F₆ and C_6D_6 CrC₆F₆ Raman spectra there are some low frequency bands, but no corresponding IR activity. These have been assigned to E_2 modes.

E_2 modes

 C_6F_6 ring. The C—C stretching mode ν_{8F} in $C_6H_6CrC_6F_6$ is assigned to the weak Raman band at 1649 cm⁻¹; the corresponding mode in the deuterated compound is not observed. In C_6F_6 this band is at 1655 cm⁻¹. The C—F stretching mode ν_7 is at 1157 cm⁻¹ in C_6F_6 , but the only Raman band in $C_6H_6CrC_6F_6$ close to this frequency, 1147 cm⁻¹, is assigned to ν_{9H} (see below). The out of plane ring deformation ν_{16F} is tentatively assigned to 574/576 cm⁻¹ (595 cm⁻¹ in C_6F_6). The problem with this assignment is that the 573 cm⁻¹ Raman band is also an IR active band at 575 cm⁻¹. Various alternatives have been considered, such as 575 cm⁻¹ being ν_{ASYM} TILT, and the two bands 497/492 cm⁻¹ and 466/460 cm⁻¹ resulting from Fermi resonance between $E_1 \nu_{SYM}$ TILT and the E_1 combination band ν_{10F} and ν_{11F} . For this alternative assignment, the fit is excellent for $C_6D_6CrC_6F_6$, but only marginally acceptable for $C_6H_6CrC_6F_6$. The in plane ring deformation ν_{6F} is suggested to lie at 428/425 cm⁻¹, close to 443 cm⁻¹ for C_6F_6 . The weak Raman bands at 270/261 cm⁻¹ are attributed to the in plane C—F bend ν_{9F} (264 cm⁻¹ in C_6F_6). The 112/108

cm⁻¹ band could perhaps be v_{17F} , the out of plane C—F bend, although this frequency is quite a bit lower than the 175 cm⁻¹ value in C₆F₆.

 C_6H_6 ring: The only two H ring E_2 modes identified are ν_{9H} and ν_{6H} . The Raman bands at 1147/838 cm⁻¹ are assigned to the in plane C—H bend ν_{9H} . This fundamental occurs at 1178/869 cm⁻¹ in C_6H_6/C_6D_6 and at 1143/868 cm⁻¹ in $(C_6H_6)_2$ Cr/ $(C_6D_6)_2$ Cr. The in plane ring deformation ν_{6H} is attributed to Raman bands at 600/589 cm⁻¹, although, in the IR, shoulders near these frequencies are also seen. In C_6H_6/C_6D_6 , ν_{6H} occurs at 606/579 cm⁻¹, and at 604/566 cm⁻¹ in $(C_6H_6)_2$ Cr/ $(C_6D_6)_2$ Cr.

Discussion

 π -Complexes of hexafluorobenzene are extremely rare. To our knowledge, the only other well-characterised molecule containing a hexahapto- C_6F_6 ring is $C_6F_6Cr(PF_3)_3$ [15] which was the subject of a ¹⁹F NMR spectroscopic study [16]. Thus, these vibrational spectroscopic data provide useful insight into the mode of bonding of a metal to such an unlikely π -bonding arene. The conventional wisdom would suggest that, in the continuum of bonding types inherent in the Dewar-Chatt-Duncanson model, fluoro-substituted unsaturated moieties tend to exhibit weak σ -donating and good π -accepting properties. In an extreme viewpoint, metal- C_2F_4 complexes may be regarded as metallocyclopropanes in which the metal has been oxidised by two units [17]. It is thus apparent that hexafluorobenzene π -complexes can only be stabilized when the electron deficiency imposed on the central chromium atom by the C_6F_6 unit is compensated for by the other ligands. Indeed, the chemistry of $C_6H_6CrC_6F_6$ has been interpreted in terms of an "internal oxidation" in which electron transfer has occurred from chromium to C_6F_6 [18]; it is clear that the C_6H_6 ring is able to compensate for the incipient build-up of positive charge at chromium since in the molecules $C_6H_6CrC_6F_nH_{6-n}$ the ¹H and ¹³C NMR chemical shifts of the C_6H_6 ring correlate beautifully with the number of fluorines in the fluorinated ring [6].

The basic picture of $C_6H_6CrC_6F_6$ which emerges from these vibrational spectroscopic assignments is one in which — with the single exception discussed below — the vibrations of the C_6H_6 ring move to lower frequencies than in benzene itself and indeed show only small perturbations from the corresponding modes in $(C_6H_6)_2Cr$ (See Table 3). Again we have to conclude, as have others before us, that the symmetric out of plane bend (or umbrella mode), ν_{11} , is much more difficult for benzene π -complexes than for benzene itself. This result has been attributed to a number of causes, such as the difficulty of orbital following [1] or to kinematic effects [14], that is, to the non-vanishing of offdiagonal elements in the G sub-matrix of the appropriate symmetry species of internal symmetry coordinates in the framework of the Wilson FG matrix formulation.

We see that the vibrations of the π -complexed C₆F₆ ring, like those of the C₆H₆ ring, occur at lower frequencies than in C₆F₆ itself. Archetypical of these are the ring breathing modes ν_{1H} and ν_{1F} which occur at 993 and 559 cm⁻¹, respectively, in the free arenes, and at 972 and 535 cm⁻¹ in the complex. In a simple view where we look at potential energy effects, the weakening of the

	<i>v</i> ₁	ν2	ν ₁₀	v ₁₁	v18	ν ₁₉	ν ₂₀	
C ₆ H ₆	993	3073	846	673	1037	1482	3064	-
(C ₆ H ₆) ₂ Cr	970	3053	860	791	999	1430	2904	
C ₆ H ₆ l Cr	972	3091	882	800	1006	1439	2927	
C ₆ F ₆	533	1395	325	166	237	1406	921	
C ₆ F ₆	559	1490	370	215	315	1530	1006	
C ₆ F ₆ l Cr	532	1397	316	163	228	1410	922	
C ₆ D ₆	928	2314	654	637	803	1287	2253	
$(\tilde{C_6D_6})_2Cr$	920	2267	669	566	802	1271	2212	
C ₆ D ₆	945	2303	660	496	814	1333	2288	

FREQUENCIES (cm⁻¹) OF SOME IR AND RAMAN ACTIVE RING FUNDAMENTALS IN $C_{6}H_{6}CrC_{6}F_{6}$ and $C_{6}D_{6}CrC_{6}F_{6}$ related molecules

C—C framework in both rings is entirely consistent with our picture of transfer of electron density from the C_6H_6 ring via the chromium to the C_6F_6 ring. Thus, donation of the π -electrons of C_6H_6 to the chromium lowers the effective bond order of the carbons in the C_6H_6 ring and loosens up the vibrations resulting in lower frequencies. Concomitantly, electron density is accepted by the C_6F_6 ring into its vacant π^* manifold hence weakening the carbon—carbon framework and lowering all the frequencies.

An interesting point which immediately arises is the question of ν_{11} , the umbrella mode, in the C_6F_6 ring which drops from 215 cm⁻¹ in C_6F_6 to 166 cm⁻¹ in $C_6H_6CrC_6F_6$. In fluoro-arenes, one can envisage considerable overlap of non-bonding fluorine electrons with the π system of the arene leading to some degree of C—F multiple bonding. (Such $2p-2p \pi$ type overlap is presumed to account for the great stability of BF₃ relative to BH₃.) However, in $C_6F_6\pi$ -complexes, the fluorine non-bonded electrons must compete with the chromium d orbitals for occupancy of the π^* -manifold of the arene. Thus, the rigidity of the hexagon of fluorines relative to the hexagon of carbons may be considerably reduced leading to a decrease in ν_{11} . However, for the C_6H_6 ring there are no low-lying hydrogen orbitals for C—H π -bonding. In any event, the observed umbrella frequency for the C_6H_6 ring increases on complexation.

A further point of difference between $C_6H_6CrC_6F_6$ and $(C_6H_6)_2Cr$ is an increase in the frequencies for the vibrations involving both rings and the metal in the asymmetric sandwich. The crystal structure of $C_6H_6CrC_6F_5PPh_2$ [7], which presumably is prototypical of such complexes, reveals that the chromium is significantly closer to the fluorinated ring than to the benzene ring. This, of course, implies a stronger interaction of the chromium with the C_6F_6 ring than with the C_6H_6 ring thus accounting for the increased frequencies of the skeletal modes involving motions of the arenes with respect to the metal.

TABLE 3

Experimental

 $C_6H_6CrC_6F_6$ was prepared and purified as described previously [18]. $C_6 D_6 Cr C_6 F_6$, m.p. 135°C, was obtained by co-condensing chromium vapor with a 1 : 1 mixture of C_6D_6 and C_6F_6 in the metal vaporisation apparatus described elsewhere [19]. The mass spectrum shows, m/e (%), 322, $C_{12}D_6CrF_6^+$ (65); 316, $C_{12}D_3CrF_6^+$, $C_{12}H_6CrF_6^+$ (4); 219, $C_6F_5Cr^+$ (17); 186, $C_6F_6^+$ (55); 136, $C_6D_6Cr^+$ (75); 98, $C_7D_7^+$ (45); 84, $C_6D_6^+$ (100); 82, $C_6D_5^+$ (60); 52, Cr^+ (80).

Room temperature infrared spectra were obtained with a Nicolet model 7199 Fourier Transform Infrared Spectrometer. For the region below 500 cm⁻¹, samples of $C_6H_6CrC_6F_6$ and $C_6D_6CrC_6F_6$ in liquid C_6H_6 were placed in a 1 mm polyethylene cell. Spectra for this region were obtained after subtracting those bands due to the polyethylene cell containing benzene alone. For the region above 450 cm⁻¹, KBr pellets containing the appropriate sandwich compound were used. The accuracy of the band positions is considered to be ± 1 cm⁻¹.

Raman spectra of spinning room temperature powder samples in Pyrex capillary tubes were obtained with excitation from the green 5145 Å line of a Spectra Physics model 164 argon ion laser. The scattered radiation was detected by a photomultiplier tube after passing through a Spex model 1400 Czerny-Turner monochromator, then amplified and recorded. Estimated accuracy of the Raman bands is $\pm 3 \text{ cm}^{-1}$.

Acknowledgement

We thank Mr. J.I.A. Thompson and Ms. Lee Gowers for assistance in obtaining the Raman data and the Natural Sciences and Engineering Research Council of Canada for financial support.

References

- 1 R.G. Snyder, Spectrochim. Acta, 10 (1959) 807.
- 2 L.H. Ngai, F.E. Stafford and L. Schäfer, J. Amer. Chem. Soc., 91 (1969) 48.
- 3 L. Schäfer, J.F. Southern and S.J. Cyvin, Spectrochim. Acta, 27A (1971) 1083.
- 4 H.P. Fritz, W. Lüttke, H. Stammreich and R. Forneris, Spectrochim. Acta, 17 (1961) 1068.
- 5 H.P. Fritz and E.O. Fischer, J. Organometal. Chem., 7 (1967) 121.
- 6 Nguyen Hao and M.J. McGlinchey, J. Organometal. Chem., 161 (1978) 381.
- 7 Nguyen Hao, B.G. Sayer, M.J. McGlinchey, C.J.L. Lock and R. Faggiani, Inorg. Chem., submitted. 8 E.B. Wilson, Phys. Rev., 45 (1934) 706.
- 9 G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Vol. 1, Adam Hilger, London, 1974, p. 12.
- 10 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Edition, John Wiley, New York, N.Y., 1978, p. 391.
- 11 D. Steele and D.H. Whiffen, Trans. Farad. Soc., 55 (1959) 369.
- 12 Reference 9, p. 447.
- 13 Reference 9, pp. 43, 45.
- 14 S.J. Cyvin, J. Brunvoll and L. Schäfer, J. Chem. Phys., 54 (1971) 1517.
- 15 R. Middleton, J.R. Hull, S.R. Simpson, C.H. Tomlinson and P.L. Timms, J. Chem. Soc. A, 1973, 120. 1973.120.
- 16 J.F. Nixon, J. Fluorine Chem., 3 (1973) 179.
- 17 R. Cramer, J.B. Kline and J.D. Roberts, J. Amer. Chem. Soc., 91 (1969) 2519.
- 18 M.J. McGlinchey and T-S. Tan, J. Amer. Chem. Soc., 98 (1976) 2271.
- 19 M.J. McGlinchey and T-S. Tan, Can. J. Chem., 52 (1974) 2439.